An Efficient Content Delivery Infrastructure Leveraging the Public Transportation Network

Qiankun Su, Katia Jaffrès-Runser, Gentian Jakllari and Charly Poulliat

IRIT, INP-ENSEEIHT, University of Toulouse

Nov. 16th, 2016

A cost-effective and secure design 0000000000

Problem statement and motivation

Growing urbanization

- 70% of the world's population lives in urban areas by 2050^1 .
- Growing urbanization leads to an increasing demand for public transport.
- A significant part of mobile contents is consumed while people use public transportation.

Growing mobile data traffic

- The mobile data traffic will be increased nearly 8-fold between 2015 and 2020².
- 4G can not satisfy the fast-growing demands.
- 5G deployments are not expected until at least 2020².

¹United Nations, World Urbanization Prospects: The 2014 Revision. https://esa.un.org/unpd/wup. URL: https://esa.un.org/unpd/wup/.

²Visual Networking Index Cisco. "Global mobile data traffic forecast update, 2015–2020". In: *white paper* (2016).

Contributions

A novel content delivery infrastructure

- relieve the wireless bandwidth crunch in urban centers
- offload up to 1TByte within 12 hours³

³Transmission rate: 100Mb/s

A cost-effective and secure design 0000000000

Outline

- 2 XOR network coding for PTNs
- 3 A cost-effective and secure design

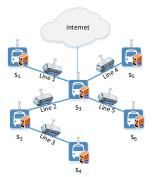
XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design 0000000000

Outline

A content delivery infrastructure using PTNs

- Scenario descriptions
- Our routing policy
- 2 XOR network coding for PTNs
 - Problem statement and motivation
 - XOR network coding implementation
 - Performance evaluation
- 3 A cost-effective and secure design
 - Problem statement and motivation
 - 3-Tier architecture
 - 1-Tier
 - 2-Tier
 - 3-Tier
 - Cost-effectiveness analysis


XOR network coding for PTNs

A cost-effective and secure design

Scenario descriptions

Scenario descriptions

- Public buses act as data mules, creating a delay tolerant network (DTN)
- Contents are obtained from nodes connected to the Internet
- Passengers download/upload contents from/to buses or bus stations

A content delivery infrastructure using PTNs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}$

XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design 0000000000

Where to install WiFi AP?

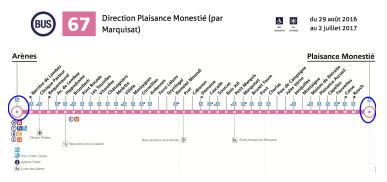


Fig. 2: The bus line 67 in Toulouse, France

- The waiting time of buses at intermediate stops is very short.
- Wireless access points (APs) are deployed at end stations, but not intermediate stops.

Qiankun SU et al.

6 / 27

A content delivery infrastructure using PTNs 00000	XOR network coding for PTNs	A cost-effective and secure design
Modeling		

Our infrastructure can be modeled as an undirected graph where

- nodes represent end stations
- edges represent bus lines

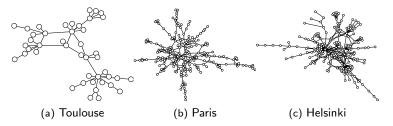


Fig. 3: The biggest connected component of public transportation networks.

A content delivery infrastructure using PTNs $_{\bigcirc \bigcirc \odot \odot \bullet \bullet}$

XOR network coding for PTNs 00000

A cost-effective and secure design 0000000000

Our routing policy (1/2)

Main routing protocols in $\ensuremath{\mathsf{DTN}}$ are designed for

• non-predictable mobility patterns

The features of DTNs created by PTNs,

- The network topology is stable.
- The behavior of buses is predictable.

Our routing policy,

- messages are delivered following the shortest path
- pre-calculate routing tables for each end station

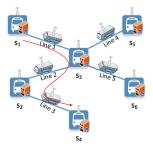
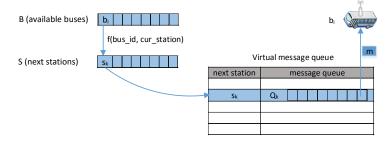


Fig. 4: Content delivery using PTNs.

A content delivery infrastructure using PTNs $\circ\circ\circ\bullet\bullet$

XOR network coding for PTNs 00000

A cost-effective and secure design 0000000000


Our routing policy (2/2)

Receive a message m at an end station

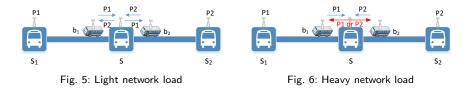
- extract *m*'s destination, look up its next-hop stations s_k
- m is placed into Q_k that stores messages going to s_k

Send a message m at an end station

- B: a list of buses currently waiting at the station
- S: a corresponding list of next-hop stations

XOR network coding for PTNs $_{\odot \odot \odot \odot \odot}$

A cost-effective and secure design 0000000000


Outline

- 1 A content delivery infrastructure using PTNs
 - Scenario descriptions
 - Our routing policy
- 2 XOR network coding for PTNs
 - Problem statement and motivation
 - XOR network coding implementation
 - Performance evaluation
- 3 A cost-effective and secure design
 - Problem statement and motivation
 - 3-Tier architecture
 - 1-Tier
 - 2-Tier
 - 3-Tier
 - Cost-effectiveness analysis

XOR network coding for PTNs ••••• A cost-effective and secure design 0000000000

Problem statement and motivation

- PTNs are built around the concept of hubs with many bus lines.
- The fair medium access control.

 \Rightarrow Such an imbalance results in a significant drop in throughput under heavy traffic conditions.

XOR network coding for PTNs $_{O \bullet O O O}$

A cost-effective and secure design

XOR network coding

XOR network coding implementation

- pairwise inter-session flows⁴
- hop-by-hop

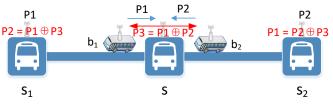


Fig. 7: The benefits of XOR network coding.

⁴Q. Su et al. "XOR network coding for data mule delay tolerant networks". In: 2015 IEEE/CIC International Conference on Communications in China (ICCC). 2015, pp. 1–6. DOI: 10.1109/ICCChina.2015.7448634.

XOR network coding for PTNs $_{\odot \bullet \odot \odot}$

A cost-effective and secure design 0000000000

XOR network coding implementation

Encoding procedures:

• Message queues Q_{ij} are indexed by the previous station s_i and the next station s_i of messages.

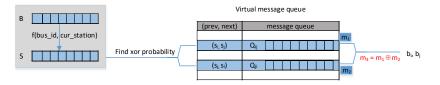


Fig. 8: Encoding procedures

Decoding procedures:

- receive a xor-ed message $m = m_i \oplus m_j$
- xor-ing again with the message previously sent, $m_j = m \oplus m_i$

Qiankun SU et al.

Simulation setup

This paper leaves for further investigation how content is requested, updated and fetched. The goal is to show the pure network coding benefits in our infrastructure.

Simulator

• the ONE (Opportunistic Network Environment simulator) Mobility model

• Real traces in GTFS ⁵ from Toulouse, Paris and Helsinki, 7:00 to 19:00

Data flows (multiple unicast flows)

- A message is created at every end station with a given creation period ($\Delta = 20$ seconds).
- The message destination is selected uniformly at random among all the stations.

 $^{^{5}}$ GTFS (General Transit Feed Specification), developed by Google, is a common format for public transportation schedules and associated geographic information.

XOR network coding for PTNs $_{\circ\circ\circ\circ\bullet}$

A cost-effective and secure design 0000000000

Performance evaluation

Benefits of network coding,

- ALL-NC: with network coding
- Baseline: without network coding
- X axis: the period from 7:00 to 19:00
- Y axis: the number of delivered messages

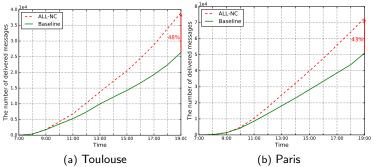


Fig. 9: Network coding benefit : number of delivered messages.

XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design

Outline

1 A content delivery infrastructure using PTNs

- Scenario descriptions
- Our routing policy
- 2 XOR network coding for PTNs
 - Problem statement and motivation
 - XOR network coding implementation
 - Performance evaluation
- 3 A cost-effective and secure design
 - Problem statement and motivation
 - 3-Tier architecture
 - 1-Tier
 - 2-Tier
 - 3-Tier
 - Cost-effectiveness analysis

Problem statement

Before adapting network coding as part of our infrastructure, two main challenges have to be addressed.

- Network coding is threatened by pollution attack and a *secure* network coding AP is more expensive than a network coding AP.
- Installing network coding enabled APs at all stations is expensive, not to mention *secure* network coding APs.

XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design

3-Tier architecture

Divide stations into 3 tiers,

- No AP is deployed (1-Tier)
- Regular AP is deployed (2-Tier)
- Secure network coding enabled AP is deployed (3-Tier)

The goal is to,

- guarantee end-to-end delivery
- minimize the cost of deployment

XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design

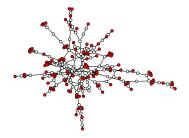


Fig. 10: The leaf nodes in Paris topology (in red)

Leaf station removal saves 63.5%, 53% and 52% of wireless APs.

City	Baseline	ALL-NC	Leaf stations removal
Toulouse	44	44	16
Paris	213	213	99
Helsinki	217	217	90

Table 1: Number of wireless access points required to cover 3 different cities.

Qiankun SU et al.

XOR network coding for PTNs $_{\rm OOOOO}$

A cost-effective and secure design

2-Tier

A minimum connected dominating sets,

- minimize the number of wireless AP
- guarantee the end to end connectivity

A CDS is formed by *M* Rai et al.⁶.

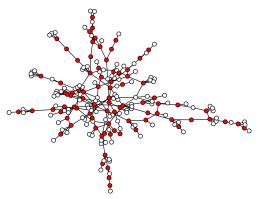


Fig. 11: A CDS in Paris topology (in red).

Qiankun SU et al.

An Efficient Content Delivery Infrastructure Leveraging the PTN

XOR network coding for PTNs 00000

A cost-effective and secure design

2-Tier, the decrease of APs

Save around three times of wireless APs.

City	Baseline	ALL-NC	2-Tier
Toulouse	44	44	13
Paris	213	213	85
Helsinki	217	217	60

Table 2: The 2-Tier architecture reduces the required number of interfaces by approximately a factor of 3.

XOR network coding for PTNs 00000

A cost-effective and secure design

2-Tier, performance evaluation

• 2-Tier: stations belong to CDS equipped with network coding enabled APs

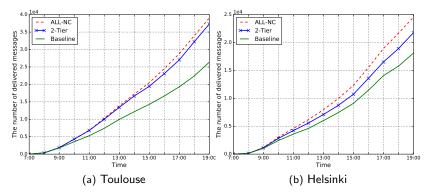


Fig. 12: Number of messages delivered for Baseline, ALL-NC and 2-Tier.

A cost-effective and secure design 00000000000

3-Tier

Select the top *n* nodes from CDS to install network coding AP

- Large benefits of network coding if existing a lot of cross flows
- Identify nodes with high degree, betweenness, PageRank

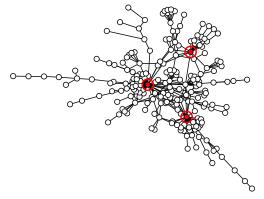


Fig. 13: The top 3 highest PageRank in Helsinki topology (in red)

XOR network coding for PTNs 00000

A cost-effective and secure design 00000000000

3-Tier, performance evaluation

City	2-Tier	3-Tier	Metric
Toulouse	13	2	Degree
Paris	85	10	Degree
Helsinki	60	3	PageRank

Table 3: 3-Tier reduces the number of such interfaces by over an order of magnitude.

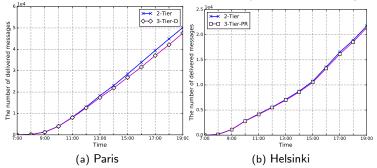


Fig. 14: Packets delivered for 2-Tier and 3-Tier.

An Efficient Content Delivery Infrastructure Leveraging the PTN

XOR network coding for PTNs 00000

A cost-effective and secure design

Cost-effectiveness analysis

The cost of

- a regular wireless AP: 1
- a secure network coding enabled AP: C (C > 1)
- Y axis: the cost effectiveness = $\frac{The number of délivered messages}{The deployment cost}$

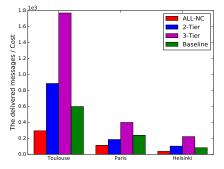


Fig. 15: The cost effectiveness for all architectures (C = 3).

Conclusion

A cost effective content delivery infrastructure (a 3-Tier architecture)

- guarantees end-to-end connectivity
- provides high packet delivery
- minimizes deployment cost

Real trace-based simulation

- reduce the number of wireless APs by a factor of 3
- deliver more messages than a baseline architecture
- offload a large amount of data, e.g., 1TByte within 12 hours in Paris topology

XOR network coding for PTNs

A cost-effective and secure design 00000000000

Thank you for your attention.

Q & A

giankun.su@enseeiht.fr

Qiankun SU et al.

An Efficient Content Delivery Infrastructure Leveraging the PTN

MSWiM'16

27 / 27